

Updates on W_R and HNL Search In a $\tau_h \tau_\ell$ + jets Final State

Exotica Jets+X Meeting 9th Sep. 2024

Youngwan Kim¹, Sihyun Jeon², Un-ki Yang¹, John Almond¹, Michael Krohn³, Billy Jackson³, Sean Poczos³, Jeremy Mans³

1 : Seoul National University , 2 : Boston University, 3 : University of Minnesota

Analysis Status

Overview

- AN-23-001 (v4)
 - Sent out to conveners for the first time before this presentation
- Presentations
 - Exotica MC&I (14th Feb. 2023)
 - Exotica Jets+X (13th May 2024)
- Updates
 - Nonprompt background estimation method following EXO-19-016 fake factor method
 - Including major systematic sources
 - Used newly processed 2018 signal samples
 - This presentation mainly focuses on 2018 results
 - 2016,2017 has similar overall picture; relevant plots included in backups

* Slides with updates since last Jets+X presentation

will include a box : Updated

Available on the CMS information server

CMS AN-23-001

CMS Draft Analysis Note

The content of this note is intended for CMS internal use and distribution only

2024/09/06 Archive Hash: untracked Archive Date: 2024/09/06

Search for W_R decaying into a heavy neutral lepton in a $\tau_h \tau_l$ + jets final state

Youngwan Kim*,1, Sihyun Jeon2, John Leslie Almond1, and Un-ki Yang1

CMS AN-23-001

Seoul National University
 Boston University
 *Primary author

Introduction

Motivation

- Unsolved mysteries with neutrinos
 - Non-zero neutrino mass from oscillation observations
 - Nature of neutrino mass also yet unknown
 - All unexplainable within the bounds of the SM
- Left-Right Symmetric Model (LRSM)
 - Requires a new SU(2) symmetry between left handed and right handed particles
 - Such symmetry introduces new "right handed gauge bosons" (W_R,Z_R)
 - Predicts the existence of heavy right-handed neutrinos (N)
 - Explains the SM neutrino mass problem via the seesaw mechanism.

W_R Searches in CMS

Overview

- W_R and Heavy N searches since Run 2:
 - LQ+LRSM inclusive search in τ channels :
 - EXO-16-016: $\tau_h \tau_h$ + jets (2015 data, 2.1 fb⁻¹) (doi:10.1007/JHEP03(2017)077)
 - EXO-16-023 : $\tau_{\ell}\tau_h$ + jets (2016 data, 12.9 fb⁻¹) (doi:10.1007/JHEP07(2017)121)
 - EXO-17-016: $\tau_{\ell}\tau_h$ + jets (2016 data, 35.9 fb⁻¹) (doi:10.1007/JHEP03(2019)170)
 - LRSM only search in ee/µµ channels:
 - EXO-17-011 : ee/μμ + jets (2016, 35.9 fb⁻¹) (doi:10.1007/JHEP05(2018)148)
 - EXO-20-002 : ee/μμ + jets (Runll, 137 fb⁻¹) (doi:10.1007/JHEP04(2022)047)
 - EXO-20-006 : ee/µµ + jets (RunII, 137 fb⁻¹) (the only Z' induced search) (doi: 10.1007/JHEP11(2023)181)

W_R Searches in CMS

Overview

- W_R and Heavy N searches since Run 2:
 - LQ+LRSM inclusive search in τ channels :
 - EXO-16-016: $\tau_h \tau_h$ + jets (2015 data, 2.1 fb⁻¹) (doi:10.1007/JHEP03(2017)077)
 - EXO-16-023 : $\tau_{\ell}\tau_h$ + jets (2016 data, 12.9 fb⁻¹) (doi: 10.1007/JHEP07(2017)121)
 - EXO-17-016: $\tau_{\ell}\tau_h$ + jets (2016 data, 35.9 fb⁻¹) (doi: 10.1007/JHEP03 (2019) 170)
 - LRSM only search in ee/µµ channels :
 - EXO-17-011 : ee/μμ + jets (2016, 35.9 fb⁻¹) (doi:10.1007/JHEP05(2018)148)
 - EXO-20-002 : ee/μμ + jets (Runll, 137 fb⁻¹) (doi:10.1007/JHEP04(2022)047)
 - <u>EXO-20-006</u>: ee/μμ + jets (Runll, 137 fb⁻¹) (the only Z' induced search) (doi: 10.1007/JHEP11 (2023) 181)

With similar analogy, trying to improve similar phase space region in tau analysis

Analysis Motivation

Search Strategy

- Adding more sensitivity for W_R search in tau channels in the $m_{WR} >> m_N$ region.
 - Trying to add sensitivity to boosted region with mwR >> mN also for the tau channels.

Analysis Motivation

Search Strategy

- Adding more sensitivity for W_R search in tau channels in the m_{WR} >> m_N region.
 - Trying to add sensitivity to boosted region with $m_{WR} >> m_N$ also for the tau channels.
 - Previous study was able to scan a wider range of phase space, especially for the **boosted** regions which was not showing good sensitivity in similar studies before.
 - Applying lessons learned from EXO-20-002 by taking advantage from jet substructures with leptons merged inside a boosted fatjet, from especially using the **lepton subjet fraction** (LSF₃) algorithm.
 - Aiming to set 2D limits on cross sections on the mwR, mN mass plane.

Signals Final Objects

- Target channel
 - $\mathbf{p} \mathbf{p} > \tau_h \mathbf{N}, \mathbf{N} > \tau_\ell \mathbf{j} \mathbf{j}$ is targeted order to mimic the previous study utilizing LSF algorithms (τ_h : hadronic tau, τ_ℓ : leptonic tau)
- Final state objects
 - Isolated τ_h & leptons + jets (back to back)
 - Kinematics of final state objects differ dramatically by the ratio of WR and N mass
 - Resolved: leptonic tau near 2 AK4 jets (mwR ~ mN)
 - Boosted : leptonic tau inside AK8 jet with bad isolation $(m_{WR}>>m_{N})$

Signals

Lepton Subjet Fraction

Lepton Subjet Fraction (LSF₃)

[doi:10.1007/JHEP04(2015)079]

- Variable devised to distinguish fat jets that are likely to contain a lepton :
- For a given fat jet, constituents are clustered into 3 subjets using the exclusive kT algorithm
- Between all pair of particles, cluster them with minimum distance $d_{ij} = min(p_T,p_T)R_{ij}$ into a single subjet until only 3 are left
- Doing so, all leptons in the event will be associated with a subjet
- LSF is then defined by the pT ratio of the lepton to the associated subjet

Signal Kinematics

- Resolved region legend :
 - $m_{WR} = 2 \text{ TeV}$
 - $-m_N = 100,1000,1900 \text{ GeV}$

- Boosted region legend :
- $m_{WR} = 1,2,4 \text{ TeV}$
- $m_N = 100 \text{ GeV}$

(Using mass points having more sensitivity in the boosted selection; mWR >> mN)

Objects

Definition

- $p_T > 50 \text{ GeV}$, $|\eta| < 2.4$
- Tight ID: POG High pT & Tracker isolation < 0.1
- Loose ID: POG High pT

Electron

- $p_T > 50 \text{ GeV}$, $|\eta| < 2.4$
- Tight ID: POG cut based loose w/o rellsoWithEA
- Loose ID: POG HEEP ID

Tau

- $p_T > Trigger safe cut$, $|\eta| < 2.4$
- DecayModeNewDM & |dZ| < 0.2
- DeepTau v2.1 (vJet,vEl,vMu) = (Tight,Tight,Tight)

Requirement	Loose	Tìght
	< 2.4	< 2.4
$p_{ m T}$	> 53GeV	> 53 GeV
ID	HighPt	HighPt
Isolation		Relative Tracker Isolation < 0.1

Requirement	Loose	Tight
	< 2.4	< 2.4
$p_{ m T}$	> 53 GeV	> 53GeV
ID	Cut Based Loose without relIsoWithEA	HEEPv7

	2016	2017	2018
Trigger	HLT_VLooseIsoPFTau 140_Trk50_eta2p1	HLT_MediumChargedIsoPFTau180Hi ghPtRelaxedIso_Trk50_eta2p1	
Trigger Safe p _T Cut	150 GeV	190 GeV	

Objects Corrections

- Event
 - Pileup weight, Trigger SF, L1 Prefire weight
- Muon, Electron
- Tau
- Isolation SF, ID SF
- DeepTau ID SF
- Energy scale

- Fatjet
 - LSF SF (not yet derived for UL)
 - Using prelegacy SFs from EXO-20-002 at the moment
 - Studying compatibility of LSF distributions between UL and prelacy

	2016	2017	2018
Trigger	HLT_VLooseIsoPFTau 140_Trk50_eta2p1	HLT_MediumChargedIsoPFTau180Hi ghPtRelaxedIso_Trk50_eta2p1	
Trigger Scale Factor	rigger Scale Factor 0.88 ± 0.08		0.87 ± 0.11

LSF SF	2016	2017	2018
Electron Fatjet	1.04	1.02	1.05
	(+0.09/-0.08)	(+0.08/-0.08)	(+0.07/-0.06)
Muon Fatjet	1.01	0.98	1.04
	(+0.06/-0.06)	(+0.07/-0.07)	(+0.06/-0.05)

Region Selection

Definition

⊭_⊤ [GeV]

Baseline Selection

- Pass single hadronic tau trigger
- Require at least 1 hadronic tau
- Require exactly 1 loose light lepton

Resolved Preselection

- Passing baseline selection
- Has at least 2 AK4 jets (j)
- Has at least 1 tight lepton

Boosted Preselection

- Passing baseline selection

100

- Failing resolved preselection
- Has at least 1 AK8 jet (J)

Region Selection

Definition

Resolved Signal Selection

- Passing resolved preselection
- Δ R(lepton, jet) > 0.4

Boosted Signal Selection

- Passing boosted preselection
- Δ R(tau, J) > 2.0 with LSF(J) > 0.6
- Δ R(lepton, J) < 0.8

Contributions

59.8 fb⁻¹ (13 TeV, 2018)

- Prompt contributions
 - Top pair, single top processes (tt+tX)
 - Multiboson(VV,VVV) processes (Others)
- Nonprompt contributions
 - Contributions from "faked" objects
 - Mostly from QCD and W,Z+jet processes
 - Both hadronic tau and light lepton have fake contributions, where hadronic taus have the biggest non-prompt contribution
 - Hadronic taus: Data-driven estimation
 - Light leptons : MC estimation

Updated

Fake Factor Method

- Jets -> taus misid. has the biggest background contribution
 - Inaccurate to estimate from MC simulations: data-driven estimation is used
 - Fake factor (FF) is measured as a function of tau DM and pT or m_eff

$$FF = \frac{NSR-Like}{NData} - \frac{NSR-Like}{NPrompt}$$

$$\frac{NSR-Like}{NAR-Like} - \frac{NAR-Like}{NPrompt}$$

- FFs are also measured with respect to different background contributions
 - QCD: measurement region (MR) set by inverting MET cut
 - Tau pT and DM (0+1 and 10+11; 0-prong and 1-prong respectively)
 - Top: no suitable MR constructed; used MC
 - Tau pT and DM (0,1,10, and 11 individually)

Methodology borrowed from EXO-19-016

doi:10.1007/JHEP05(2024)311

Fake Factor Application

Background EstimationHadronic Tau Fake

- After applying fake factors and compare with data, closure seems to agree well within overall 30% normalization uncertainty
- 30% flat uncertainty applied as systematics to nonprompt contributions

Systematics

Overview

- In previous iteration, no specific systematic source was considered thus a dummy 30% was applied
- Major systematics included, taken hints from other hadronic tau final state LRSM studies :
 - Jet: Energy scale
 - Tau: Energy scale, ID SF
 - Fake: FF statistical error, normalization
 - Theory: PDF, scale
 - Others: Luminosity, trigger SF

Uncertainty source		Туре	Magnitude	Processes
Luminosity		norm.	1 - 2.5%	All Simulations
Hadronic Tau	ID.	shape	_	All Simulations
	Trigger	norm.	8 - 11%	All Simulations
	Energy Scale	shape	_	All Simulations
	FF Stat.	shape	_	Nonprompts
	FF Norm.	norm.	30%	Nonprompts
Jet	Energy Scale	shape	_	All Simulations
Theory	PDF	shape.	_	Signals
	$\mu_{ m R}, \mu_{ m F}$	shape	_	Signals

Systematics Impacts

Background only
Asimov

Signal injected (r=1)
Asimov

Results **Expected Limits**

- Preliminary expected limits are extracted
 - 2018 only as samples from other eras are still being produced
 - Fitting based on reconstructed W_R mass shape: m(tau,lepton,jets)
 - Mentioned systematics are included
 - Binning optimization for stable fitting is being studied

59.8 fb⁻¹ (13 TeV)

Others

(2.0, 0.2) TeV

59.8 fb⁻¹ (13 TeV)

Others

(2.0, 0.2) TeV

Results **Expected Limits**

 $m_N = 0.1$ TeV Scenario

Updated

2018 only 59.8 fb⁻¹ (13 TeV)

~1.25 TeV to ~3.3 TeV

Results **Expected Limits**

 $m_N = 0.2$ TeV Scenario

Updated

2018 only 59.8 fb⁻¹ (13 TeV)

~1.75 TeV to ~3.5 TeV

Conclusion

- Search for W_R and HNL in a $\tau_h \tau_\ell$ + jets final state is being actively updated
 - Updated background modeling of hadronic tau fakes show good agreement with data in CRs for all years
 - Included major systematics for today's result, but only for 2018
 - Would like to ask for PC lane priority production for the rest of the years 2016, 2017 signal samples
 - Will include all systematics for all era in the next iteration
 - Preliminary expected limits extracted using only 2018, improved compared to previous studies
 - mN = 0.1 TeV scenario: improved from ~ 1.25 TeV to ~ 3.3 TeV
 - mN = 0.2 TeV scenario : improved from ~ 1.75 TeV to ~ 3.5 TeV
 - First iteration of AN has been sent out to conveners
 - Expecting to do a full status report for Run 2 only before winter

Thank You!

Backups

Signals

(run:lumi:event) = (1:54:81888) of (mWR,mN) = (4.8 TeV, 200GeV)

Signals

Trigger Efficiency

Single Tau HLT

Tau ID Meeting (14th Dec. 2020)

Selection Efficiency

Signals

CMS VERI LUX TAS MEA

Efficiency calculated from corresponding
Gen-matched channels

EXO-16-023 here is not exactly identical with the original selection

Background Estimation QCD FF

Top FF

Top FF

CMS VERI LUX TAS MEA

