

Search for W_R and HNL in a $\tau_h \tau_\ell$ + jets Final State

KCMS-Theory Joint Annual Workshop 10th Jan. 2025

Youngwan Kim¹,

Sihyun Jeon², Un-ki Yang¹, John Almond¹, Chihwan Ahn¹, Michael Krohn³, Billy Jackson³, Sean Poczos³, Jeremy Mans³ 1 : Seoul National University , 2 : Boston University, 3 : University of Minnesota

Introduction

Motivation

- Unsolved mysteries with neutrinos
 - Neutrino oscillation, mass problem...
 - Unexplainable in the bounds of the SM

- Left-Right Symmetric Model (LRSM)
 - Requires a new SU(2) symmetry between left handed and right handed particles
 - Such symmetry introduces new "right handed gauge bosons" (W_R,Z_R)
 - Predicts the existence of heavy right-handed neutrinos (N)
 - Explains the SM neutrino mass problem via the seesaw mechanism.

Analysis Motivation Search Strategy

CMS
VERILL
TAS M

- Adding more sensitivity for W_R search in tau channels in the $m_{WR} >> m_N$ region.
 - Trying to add sensitivity to boosted region with $m_{WR} >> m_N$ also for the tau channels.
 - EXO-20-002 was able to scan a wider range of phase space, especially for the **boosted regions** which was not showing good sensitivity in similar studies before in ee/µµ channel
 - Applying lessons learned from EXO-20-002 by taking advantage from jet substructures with leptons merged inside a boosted fatjet, from especially using the **lepton subjet fraction (LSF₃) algorithm** for the tau channel
 - Aiming to set 2D limits on cross sections on the m_{WR} , m_N mass plane.

EXO-17-016 (35.9/fb)

Enhancing the boosted regions ! $(m_{WR} >> m_N)$

Signals Final Objects

- Target channel
 - $\mathbf{p} \mathbf{p} > \tau_h \mathbf{N}, \mathbf{N} > \tau_\ell \mathbf{j} \mathbf{j}$ is targeted order to mimic the previous study utilizing LSF algorithms (τ_h : hadronic tau, τ_ℓ : leptonic tau)
- Final state objects
 - Isolated τ_h & leptons + jets (back to back)
 - Kinematics of final state objects differ dramatically by the ratio of WR and N mass
 - Resolved: leptonic tau near 2 AK4 jets (mwR ~ mN)
 - Boosted : leptonic tau inside AK8 jet with bad isolation $(m_{WR}>>m_{N})$

Signals

Lepton Subjet Fraction

Lepton Subjet Fraction (LSF₃)

[doi:10.1007/JHEP04(2015)079]

- Variable devised to distinguish fat jets that are likely to contain a lepton :
- For a given fat jet, constituents are clustered into 3 subjets using the exclusive kT algorithm
- Between all pair of particles, cluster them with minimum distance $d_{ij} = min(p_T,p_T)R_{ij}$ into a single subjet until only 3 are left
- Doing so, all leptons in the event will be associated with a subjet
- LSF is then defined by the pT ratio of the lepton to the associated subjet

Objects

Definitions & Corrections

- $p_T > 50 \text{ GeV}$, $|\eta| < 2.4$
- Tight ID: POG High pT & Tracker isolation < 0.1
- Loose ID : POG High pT

Electron

- $p_T > 50 \text{ GeV}$, $|\eta| < 2.5$
- Tight ID: POG cut based loose w/o rellsoWithEA
- Loose ID: POG HEEP ID

• Tau

- $p_T > Trigger safe cut, |\eta| < 2.4$
- DecayModeNewDM & |dZ| < 0.2
- DeepTau v2.1 (vJet,vEl,vMu) = (Tight,Tight,Tight)

♦ Corrections

- Event
 - Pileup weight, Trigger SF, L1 Prefire weight
- Muon, Electron

- Tau
- Isolation SF, ID SF

DeepTau ID SF

Energy scale

- High-pt muon resolution
- Jet
 - Jet energy correction
 - Fatjet LSF SF

Region Selection

Definition

Baseline Selection

- Pass single hadronic tau trigger
- Require at least 1 hadronic tau
- Require exactly 1 loose light lepton

Resolved Preselection

- Passing baseline selection
- Has at least 2 AK4 jets (j)
- Has at least 1 tight lepton

Boosted Preselection

- Passing baseline selection
- Failing resolved preselection
- Has at least 1 AK8 jet (J)

Region Selection

Definition

Resolved Signal Selection

- Passing resolved preselection
- Δ R(lepton, jet) > 0.4
- MET > 100 GeV & m(tau, lepton, jets) > 900 GeV

Fake Control Region Selection

- Passing preselection
- MET < 100 GeV & m(tau, lepton, jets) or m(tau,fatjet) < 500 GeV

Boosted Signal Selection

- Passing boosted preselection
- Δ R(tau, J) > 2.0 with LSF(J) > 0.6
- Δ R(lepton, J) < 0.8
- MET > 100 GeV & m(tau,fatjet) > 900 GeV

Contributions

59.8 fb⁻¹ (13 TeV, 2018)

- Prompt contributions
 - Top pair, single top processes (tt+tX)
 - V+jets, Multiboson(VV,VVV) processes (Others)
- Nonprompt contributions
 - Contributions from "faked" objects
 - Mostly from QCD and W,Z+jet processes
 - Both hadronic tau and light lepton have fake contributions, where hadronic taus have the biggest non-prompt contribution
 - Hadronic taus: Data-driven estimation
 - Light leptons : MC estimation

Fake Factor Method

- Jets -> taus misid. has the biggest background contribution
 - Inaccurate to estimate from MC simulations: data-driven estimation is used
 - Fake factor (FF) is measured as a function of tau DM and pT or m_eff

$$FF = \frac{NSR-Like}{NData} - \frac{NSR-Like}{NPrompt}$$

$$\frac{NAR-Like}{Data} - \frac{NAR-Like}{Prompt}$$

- FFs are also measured with respect to different background contributions
 - QCD: measurement region (MR) set by inverting MET cut
 - Tau pT and DM (0+1 and 10+11; 0-prong and 1-prong respectively)
 - Top: no suitable MR constructed; used MC
 - Tau pT and DM (0,1,10, and 11 individually)

Methodology borrowed from EXO-19-016

doi:10.1007/JHEP05(2024)311

Fake Control Region

Plots

Fake Control Region

Plots

Systematics

Overview

Uncertainty source		Type	Magnitude	Processes	Era correlation
Luminosity		norm.	1 – 2.5%	All Simulations	Partial
L1 Prefire		shape	_	All Simulations	No
Pileup		shape	_	All Simulations	No
Muon	Energy Scale	shape	_	All Simulations	No
	ID.	shape	_	All Simulations	Yes
	Resolution	shape	_	All Simulations	Yes
	Isolation	shape	_	All Simulations	Yes
Electron	Energy Scale	shape	_	All Simulations	No
	ID.	shape	_	All Simulations	Yes
	Resolution	shape	_	All Simulations	No
Hadronic Tau	ID.	shape	_	All Simulations	Partial
	Trigger	norm.	8 – 11%	All Simulations	No
	Energy Scale	shape	_	All Simulations	No
	Fake Rate	shape	_	Fakes	No
	Fake Norm.	norm.	30%	Fakes	Yes
Jet	Energy Scale	shape	_	All Simulations	No
	Energy Resolution	shape	_	All Simulations	No
Fat Jet	LSF	shape	_	All Simulations	No
Theory	PDF	norm.	1 – 20%	Signals	Yes
	$\mu_{\mathrm{R}}, \mu_{\mathrm{F}}$	shape	- (Signals	Yes
Bin-by-bin Stat.		shape.	- \	All Simulations	Yes

Results Expected Limits

- Preliminary expected limits are extracted
 - Fitting based on reconstructed W_R mass shape: m(tau,lepton,jets)
 - 2016preVFP and 2016postVFP is combined and lepton channels are combined
 - Top and Others are combined as a single process
 - Mentioned systematics are included

Results Expected Limits

m_N = 0.1 TeV Scenario

Improved sensitivity compared to previous studies!

Unset to ~3.6 TeV

Results **Expected Limits**

 $m_N = 0.2$ TeV Scenario

138 fb⁻¹ (13 TeV)

Improved sensitivity compared to previous studies!

~1.25 TeV to ~3.6 TeV

138 fb⁻¹ (13 TeV)

Results Expected Limits

- 2D limits on the m_{WR}-m_N plane
 - Showing "combined" (= boosted+resolved), boosted and resolved simultaneously
 - Previous analysis is also shown which contrasts the performance of our analysis in the boosted region
 - Actual limits were not available in Hepdata, thus a private PDF extractor was used
 - This might be removed later as it is a privately extracted limit
 - Due to the bad signal granularity, we are investigating on how to plot this in a better sense

Conclusion

- Search for W_R and HNL in a $\tau_h \tau_\ell$ + jets final state is being actively updated
 - The analysis is in an advanced state, ready to follow the Moriond 2025 timeline.
 - Preliminary expected limits extracted using full Run2, improved compared to previous studies
 - m_N = 0.1 TeV scenario: previously unset to ~ 3.6 TeV
 - m_N = 0.2 TeV scenario: improved from ~ 1.25 TeV to ~ 3.6 TeV
 - Object reviews awaiting & paper draft ongoing, getting in shape for PreApp

Thank You!

Backups

Signals

Muon p_T, η, φ (252.2 GeV, 0.317, -0.22)

(run:lumi:event) = (1:54:81888) of (mWR,mN) = (4.8 TeV, 200GeV)

Signals

Resolved Event Display

(run:lumi:event) = (1:24:37770) of (mWR,mN) = (4.8 TeV, 4.7 TeV)

Signal Kinematics

- Resolved region legend :
 - $m_{WR} = 2 \text{ TeV}$
 - $-m_N = 100,1000,1900 \text{ GeV}$

- Boosted region legend :
- $m_{WR} = 1,2,4 \text{ TeV}$
- $m_N = 100 \text{ GeV}$

(Using mass points having more sensitivity in the boosted selection; mWR >> mN)

Trigger Efficiency

Single Tau HLT

Tau ID Meeting (14th Dec. 2020)

Selection Efficiency

Signals

CMS VERI LU TAS ME

Efficiency calculated from corresponding Gen-matched channels

EXO-16-023 here is not exactly identical with the original selection

Background Estimation QCD FF

Top FF

Top FF

Fake Factor Application

Background EstimationHadronic Tau Fake

- After applying fake factors and compare with data, closure seems to agree well within overall 30% normalization uncertainty
- 30% flat uncertainty applied as systematics to nonprompt contributions

Systematics

Impacts

Background only
Asimov

Systematics Impacts

Updated

r=1 injected for Signal (3.5,1.0) TeV

Systematics

Impacts

r=1 injected for Signal (3.5,0.2) TeV

