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● Neutrino oscillation → ν have non-zero masses.
○ Observed limit of mν ≲ 0.1 eV scale.
○ Why is it extremely small?

● Type-I seesaw model
○ Postulates heavy Majorana neutrino N.
○ mν is determined by mν ~ yν

2v2/mN. (yν : Yukawa coupling, v : Higgs VEV)

● N can be produced via mixing with SM neutrino → xsec ∝ |VlN|2 or |VlN|4
○ Drell-Yan (DY) process (left) / Wγ fusion process (center) / SSWW process (right)

Motivation of the search

JHEP 01 (2019) 122 PRL 131, 011803

DY Wγ SSWW

2016 Data : μμ, ee, eμ Run 2 Data : μμ
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● Signal kinematics
○ Resonant N: DY, Wγ

■ Low mass (mN < 500 GeV) : Resolved
■ High mass (mN > 500 GeV) : Boosted

○ Non-resonant N: SSWW
■ Vector boson fusion (VBF) topology

● Signal contribution
○ Low mass (mN < 500 GeV)

■ DY (dom.) + Wγ
○ High mass (mN > 500 GeV)

■ SSWW (dom.) + Wγ

Features of signals

DY Wγ

SSWW

500



4

Search strategy * Details in back-up

● Signal and control regions (SR/CR) are carefully defined.

○ SR: Small MET and no b-tagged jets
○ CR: Large MET or 1 b-tagged jets

● N mass dependent SR3
○ High mass: low backgrounds

→ Cut-based selection
○ Low mass: high backgrounds

→ Adopting BDT to discriminate signals from SM backgrounds.

Boosted

VBF

Resolved VBF cuts
*Boosted jet (J): wide-cone jet 



Background Estimation:
Fake, Charge-flip, Prompt
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Background estimation: Fake leptons
● Fake leptons: misidentified hadrons, leptons from heavy-flavor jets, etc.

● Data-driven fake rate method is used
○ Fake rate: ratio of fake leptons to pass the lepton ID

■ Measured as a function of mother jet’s pT and |η| using data

○ Systematics
■ MC closure (20%)
■ Variation on measurement region selection (10%)
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Background estimation: Fake leptons – validation

● Validated in fake-dedicated control regions:
○ SR, but having large MET or 1 b-jet

● Confirmed good agreement within systematic uncertainty.
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Background estimation: Charge-flip leptons
● Charge-flip leptons: charge-mismeasured leptons

○ Dominant in electron channel
○ Muon is negligible

● Charge-flip rate is measured using DY MC in electron pT and |η| bin

○ Rates of O(10-5) to O(10-2) depending on electron pT and |η|.

Barrel Endcap
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Background estimation: Charge-flip leptons – validation

● Scale factors are estimated using same-sign ee data within Z mass

● Validated in dedicated CRs

Boosted VBF Resolved

Barrel-Barrel / Endcap-Endcap events
Measurement

Barrel-Endcap events
Validation
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Background estimation: Prompt leptons
● Some SM processes can mimic SS dilepton + jets events

○ Major processes are WZ, ZZ, Zγ, W±W±, estimated by MC
○ The agreement in CRs are confirmed

■ Included in the likelihood fit to give further constraints



Optimizations:
Object IDs, Signal Region Binning
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Object ID optimization: Leptons
● Leptons

○ BDT trainings have been conducted for muon/electron IDs
■ Muon: against fake leptons
■ Electron: against fake, charge-flip, photon-conversion leptons

○ MVA distributions have been validated in dedicated control regions

○ Final selections are then determined based on figures of merit

CMS Private Work CMS Private Work

Efficiencies on BDT trained electron ID Control plots with muon ID
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Object ID optimization: Jets
● Jets

○ Figures of merits are calculated while varying jet selections
■ Jet pT, invariant mass, MVA scores to veto pileups, b-jets, etc.

Figure of merit

Jet pT scan

Other variable scan

Comparison
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Bin optimization with SRs
● Signal regions are binned to extract the maximal sensitivity.

○ Boosted SR divided into 6 bins
■ Key variables: Reconstructed N mass – m(l1J),

lepton pT

● DY+Wγ: high m(l1J)

○ VBF SR divided into 3 bins
■ Key variables: Scalar sum of jet energy (HT),

lepton pT
● SSWW: low HT/pT(l)

○ Resolved SR (high mass) divided into 14 bins
■ Key variables: Number of jets, m(llW), lepton pT, MET

● DY+Wγ: high m(llW)
● SSWW: low number of jets (Bonus!)

○ Resolved SR (low mass) divided into 17 bins
■ Binned by BDT score giving the maximal sensitivity 

SSWW

DY+Wγ
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Results (Blinded)
● Boosted SR: distribution (left), signal efficiency (right)

● DY+Wγ signals:
○ High m(l1J)

● DY+Wγ signal efficiency
increases with N mass.
○ Boosted topology
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Results (Blinded)
● VBF SR: distribution (left), signal efficiency (right)

● SSWW signals:
○ Low HT compared to lepton pT

● SSWW signal efficiency is 
maximized
○ VBF topology
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Results (Blinded)
● Resolved SR: distribution (left), signal efficiency (right)

● DY+Wγ signals:
○ High m(llW)

● SSWW signals:
○ Low number of jets

● DY+Wγ: maximal in low mass
(BDT selection)

● SSWW: still captured by
cut-based selection



Expected Limits:
Comparison with Existing Analyses
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Expected limits & Comparison with prev. CMS searches

● Expected limits using full Run-II data
○ Results compared with previous CMS searches

■ JHEP 01 (2019) 122 : DY+Wγ / 2016 / μμ, ee, eμ (red)
■ PRL 131, 011803 : SSWW / Run-II / μμ (blue)

○ Improved sensitivity across all mass points up to factor of 7

● μμ: Enhanced even when compared with the previous Run-II analysis
○ SSWW signals are additionally captured in the resolved SR.

● ee, eμ: The first CMS search using these channels in SSWW
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Comparison with ATLAS results
● ATLAS Phys. Lett. B 856 (2024) 138865 (top) to this search (bottom)

○ Azure lines at |V|2 = 0.1

● Achieved better sensitivity across all lepton channels.
○ The first LHC search integrating 3 signal processes.
○ SSWW signals are additionally captured in the resolved SR.
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Summary
● Search for heavy neutral leptons with same-sign dilepton + jets final states 

using CMS Run-II data has been presented.
○ The first CMS search using ee and eμ final states in the SSWW signal
○ The first LHC search to include 3 heavy Majorana neutrino processes

● Key aspects of the search strategy and relevant studies were discussed:
○ Signal kinematics and the concept of event selection
○ Background estimation and validation
○ Object ID optimization
○ Signal region binning optimization

● Significant improvements achieved across a wide range of N mass:
○ Up to 7x better results than previous CMS searches
○ Better sensitivity compared to the ATLAS searches
○ Reached 25 TeV, breaking the CMS center of mass energy limit

● Pre-approval preparation ongoing (CMS SUS-24-014).
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