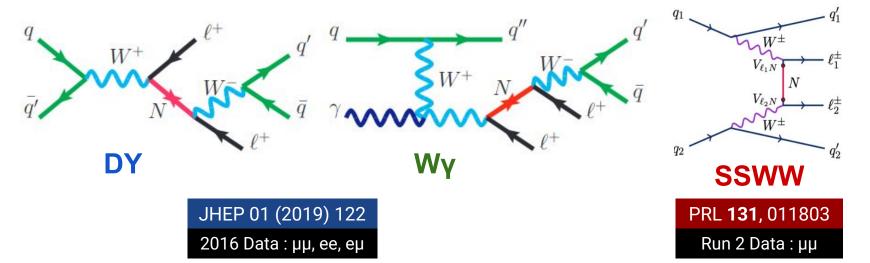


Search for Heavy Neutral Leptons in Same-Sign Dilepton and Jets Final States with CMS Run-II Data

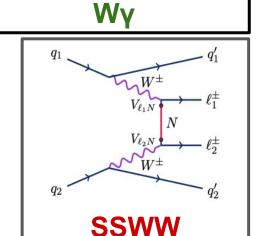

<u>Jihun Kim</u>¹, Haneol Lee¹, John Almond¹, Youngwan Kim¹, and Un-ki Yang¹

¹Seoul National University
On behalf of the CMS collaboration

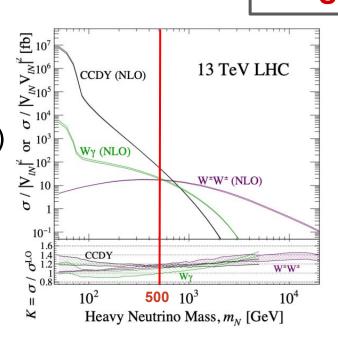
KPS 2025 Spring Meeting 23rd April 2025

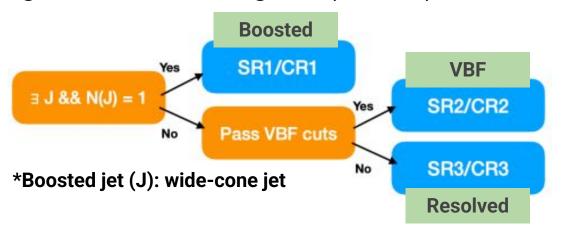
Motivation of the search

- Neutrino oscillation → v have non-zero masses.
 - Observed limit of m_v ≤ 0.1 eV scale.
 - Why is it extremely small?
- Type-I seesaw model
 - Postulates heavy Majorana neutrino N.
 - \circ m_v is determined by m_v ~ y_v²v²/m_N. (y_v: Yukawa coupling, v: Higgs VEV)
- N can be produced via mixing with SM neutrino → xsec ∝ |V_{IN}|² or |V_{IN}|⁴
 - Drell-Yan (DY) process (left) / Wγ fusion process (center) / SSWW process (right)



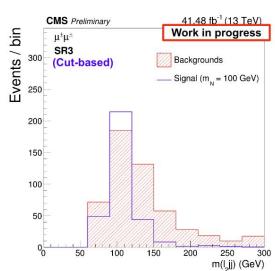
Features of signals


- Signal kinematics
 - Resonant N: DY, Wy


- High mass (m_N > 500 GeV) : Boosted
- Non-resonant N: SSWW
 - Vector boson fusion (VBF) topology

- Signal contribution
 - \circ Low mass (m_N < 500 GeV)
 - DY (dom.) + Wγ
 - High mass (m_N > 500 GeV)
 - SSWW (dom.) + Wy

Signal and control regions (SR/CR) are carefully defined.

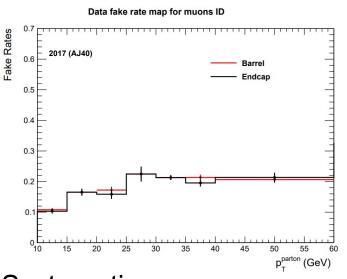

Variable	Cut
$m(\ell\ell)$	> 20 GeV
$ \Delta\phi(\ell,\ell) $	> 2
m(jj)	> 750 GeV
$ \Delta \eta(j,j) $	> 2.5
$\max(\mathcal{Z}_{\ell})$	< 0.75

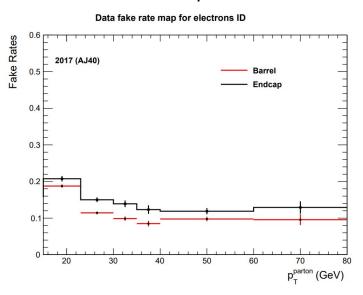
VBF cuts

- SR: Small MET and no b-tagged jets
- CR: Large MET or 1 b-tagged jets

N mass dependent SR3

- High mass: low backgrounds
 - → **Cut-based** selection
- Low mass: high backgrounds
 - → Adopting BDT to discriminate signals from SM backgrounds.

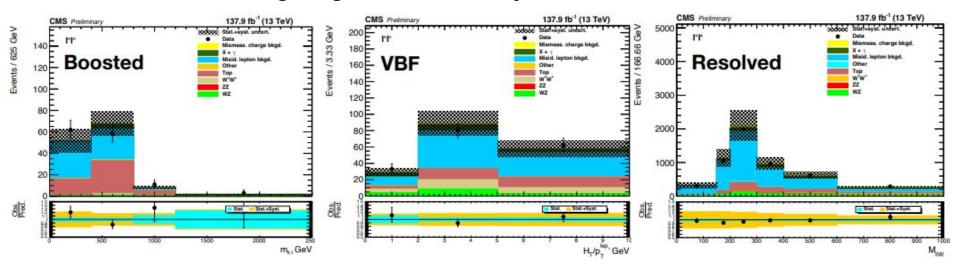



Background Estimation:

Fake, Charge-flip, Prompt

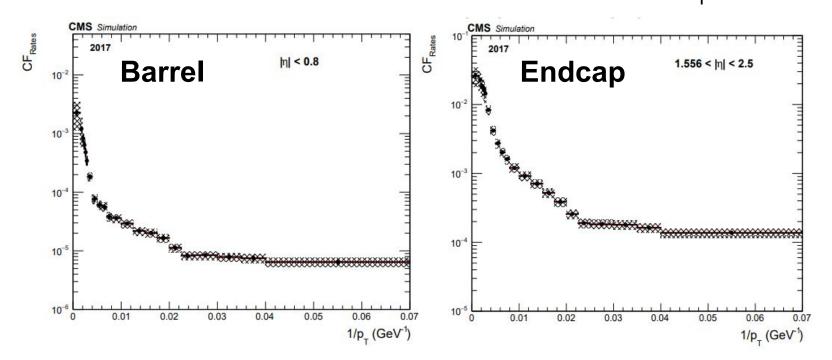
Background estimation: Fake leptons

- Fake leptons: misidentified hadrons, leptons from heavy-flavor jets, etc.
- Data-driven fake rate method is used
 - Fake rate: ratio of fake leptons to pass the lepton ID
 - Measured as a function of mother jet's p_T and $|\eta|$ using data



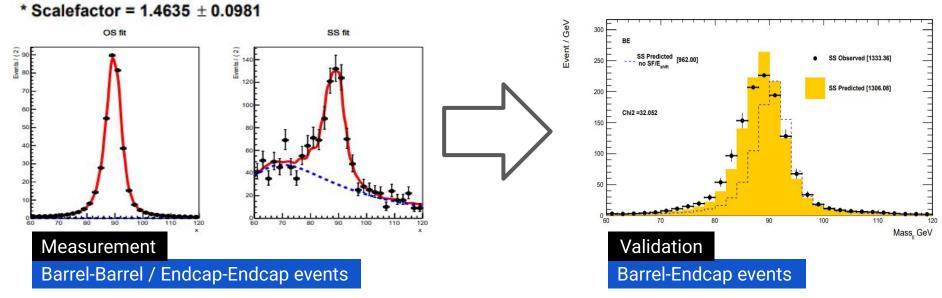
- Systematics
 - MC closure (20%)
 - Variation on measurement region selection (10%)

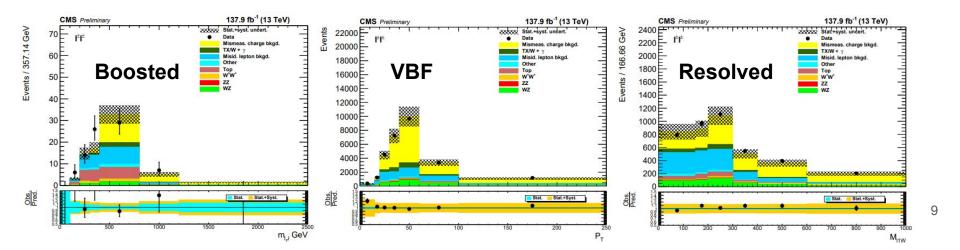
Background estimation: Fake leptons – validation


- Validated in fake-dedicated control regions:
 - SR, but having large MET or 1 b-jet

Confirmed good agreement within systematic uncertainty.

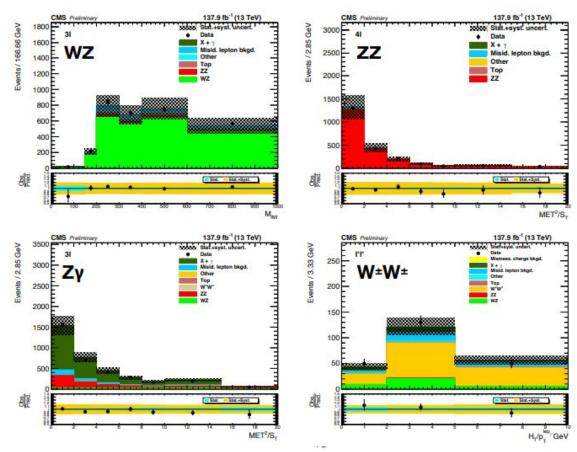
Background estimation: Charge-flip leptons


- Charge-flip leptons: charge-mismeasured leptons
 - Dominant in electron channel
 - Muon is negligible
- Charge-flip rate is measured using DY MC in electron p_τ and |η| bin


Rates of O(10⁻⁵) to O(10⁻²) depending on electron p_{T} and $|\eta|$.

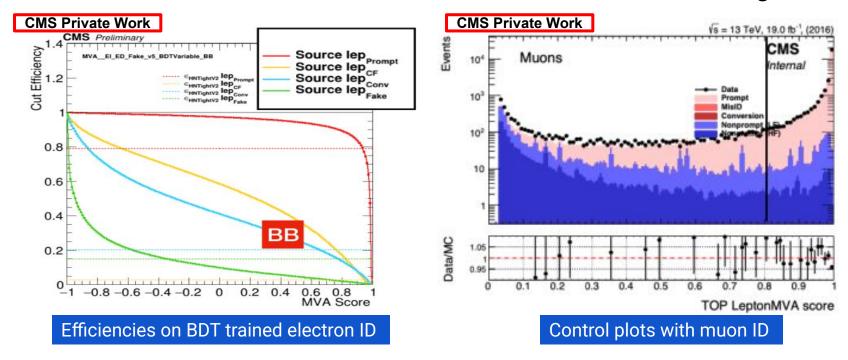
Background estimation: Charge-flip leptons – validation

Scale factors are estimated using same-sign ee data within Z mass



Validated in dedicated CRs

Background estimation: Prompt leptons

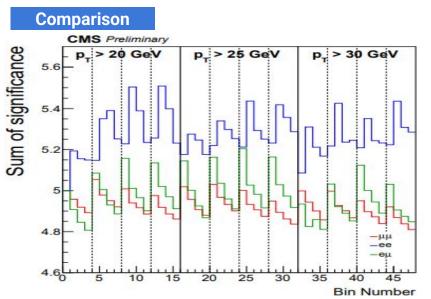

- Some SM processes can mimic SS dilepton + jets events
 - Major processes are WZ, ZZ, Zγ, W[±]W[±], estimated by MC
 - The agreement in CRs are confirmed
 - Included in the likelihood fit to give further constraints

Optimizations: Object IDs, Signal Region Binning

Object ID optimization: Leptons

- Leptons
 - BDT trainings have been conducted for muon/electron IDs
 - Muon: against <u>fake</u> leptons
 - Electron: against <u>fake</u>, <u>charge-flip</u>, <u>photon-conversion</u> leptons
 - MVA distributions have been validated in dedicated control regions

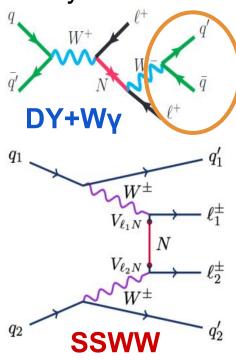
Final selections are then determined based on figures of merit


Object ID optimization: Jets

Jets

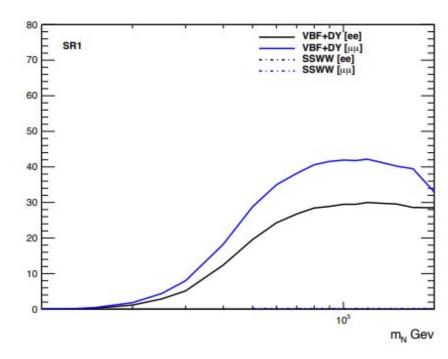
- Figures of merits are calculated while varying jet selections
 - Jet p_T , invariant mass, MVA scores to veto pileups, b-jets, etc.

Figure of	nerit	
$Z_A = $	$2\left((s+b)\ln\left(1+\frac{s}{b}\right)-s\right)$)


Jet p _T scan	
Jet	$p_{\rm T}$ cut $>$ (GeV)
AK8	200, 225, 250
AK4 (central)	20, 25, 30
AK4 (b tagged)	20, 25, 30

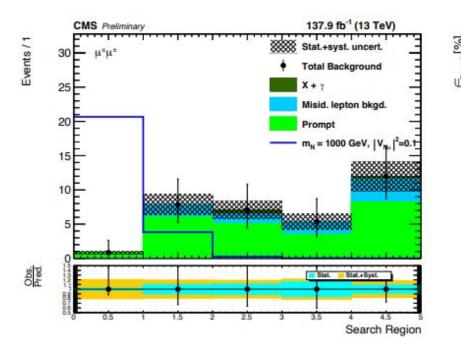
Variables and cuts
No W tagging : without or with jet mass cut ($40 < m(J) < 130$ GeV)
t ₂₁ : low purity WP, high purity WP
ParticleNet WvsQCD: mistag rate of 5%(without or with jet mass cut), 1%, 0.5%
Pileup MVA WP: none, loose, medium, tight
For each pileup MVA WP, p_T cut of H_T jets : $> 15, 20, 25, 30$ GeV
DeepJet WP: loose, medium, tight

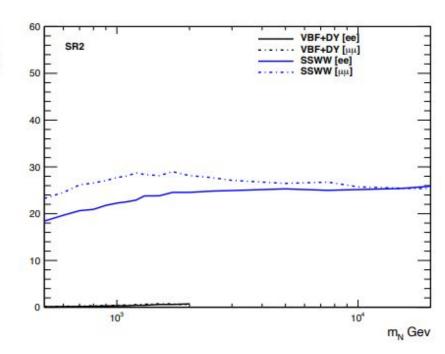
Bin optimization with SRs


- Signal regions are binned to extract the maximal sensitivity.
 - Boosted SR divided into 6 bins
 - Key variables: Reconstructed N mass m(I₁J), lepton p_⊤
 - **DY+WY**: high $m(I_1J)$
 - VBF SR divided into 3 bins
 - Key variables: Scalar sum of jet energy (H_T),
 lepton p_T
 - **SSWW**: low $H_T/p_T(I)$
 - Resolved SR (high mass) divided into 14 bins
 - Key variables: Number of jets, m(IIW), lepton p_T, MET
 - DY+Wy: high m(IIW)
 - SSWW: <u>low number of jets</u> (Bonus!)
 - Resolved SR (low mass) divided into 17 bins
 - Binned by BDT score giving the maximal sensitivity

Results (Blinded)

<u>Boosted</u> SR: distribution (left), signal efficiency (right)

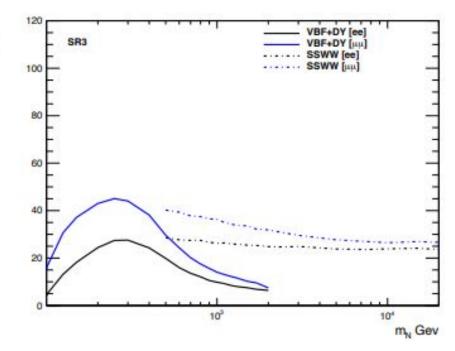



- DY+Wy signals:
 - o High m(I₁J)

- DY+Wy signal efficiency increases with N mass.
 - Boosted topology

Results (Blinded)

• **VBF** SR: distribution (left), signal efficiency (right)

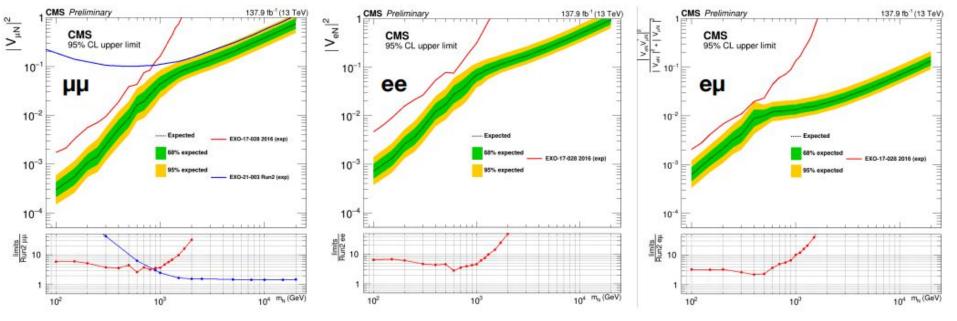


- SSWW signals:
 - Low H_T compared to lepton p_T
- SSWW signal efficiency is maximized
 - VBF topology

Results (Blinded)

• Resolved SR: distribution (left), signal efficiency (right)

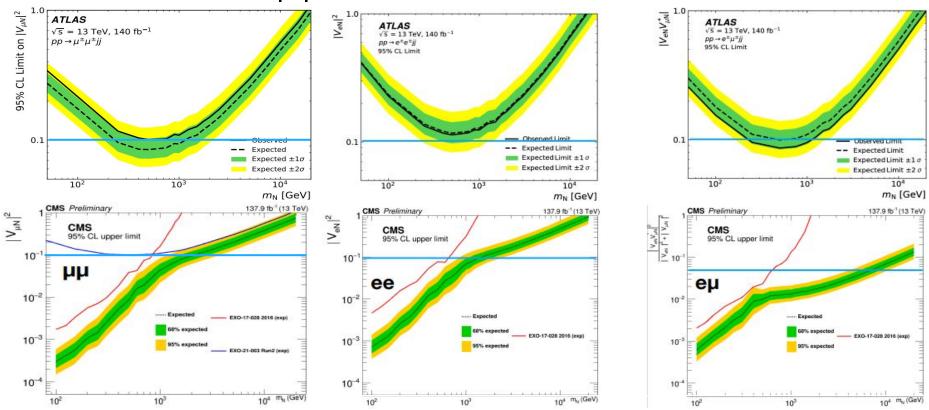
- DY+Wy signals:
 - High m(IIW)
- SSWW signals:
 - Low number of jets


- DY+Wγ: maximal in low mass (BDT selection)
- SSWW: <u>still captured</u> by cut-based selection

Expected Limits:

Comparison with Existing Analyses

Expected limits & Comparison with prev. CMS searches


- Expected limits using full Run-II data
 - Results compared with previous <u>CMS</u> searches
 - JHEP 01 (2019) 122 : DY+Wγ / 2016 / μμ, ee, eμ (red)
 - PRL 131, 011803 : SSWW / Run-II / μμ (blue)
 - Improved sensitivity across all mass points up to factor of 7

- μμ: Enhanced even when compared with the previous <u>Run-II analysis</u>
 - SSWW signals are additionally captured in the resolved SR.
- ee, eμ: The first CMS search using these channels in SSWW

Comparison with ATLAS results

- ATLAS Phys. Lett. B 856 (2024) 138865 (top) to this search (bottom)
 - Azure lines at $|V|^2 = 0.1$

- Achieved better sensitivity across all lepton channels.
 - The first LHC search integrating 3 signal processes.
 - SSWW signals are additionally captured in the resolved SR.

Summary

- Search for heavy neutral leptons with same-sign dilepton + jets final states using CMS Run-II data has been presented.
 - The first CMS search using ee and eμ final states in the SSWW signal
 - The first LHC search to include 3 heavy Majorana neutrino processes
- Key aspects of the search strategy and relevant studies were discussed:
 - Signal kinematics and the concept of event selection
 - Background estimation and validation
 - Object ID optimization
 - Signal region binning optimization
- Significant improvements achieved across a wide range of N mass:
 - Up to <u>7x better</u> results than previous CMS searches
 - Better sensitivity compared to the ATLAS searches
 - Reached 25 TeV, <u>breaking the CMS center of mass energy limit</u>
- Pre-approval preparation ongoing (CMS SUS-24-014).

Back-ups